CHAPTER 10

κ -saturated models and quantifier elimination

In this chapter we take a look at two concepts which are useful in analysing type spaces. The first concept is that of a κ -saturated model. An important feature of κ -saturated models of a complete theory T is that they realise all types over T: this means that the type spaces of T can be exhaustively analysed by looking at configurations of elements in a κ -saturated model.

The other concept is quantifier elimination. A theory T has quantifier elimination if, over T, any formula is equivalent to one without quantifiers. As one can imagine, this makes models of T much easier to understand. Indeed, quantifier elimination is so useful that even when a theory T does not have quantifier elimination, model theorists will typically search for natural extensions of T which do have quantifier elimination.

1. κ -saturated models: definition

To define κ -saturated models we need to introduce some notational conventions. Let A be an L-structure and X a subset of A. We often refer to the elements in X as parameters. In addition, we will use the following notation:

- We write L_X for the language L extended with constants for all elements of X.
- We write $(A, a)_{a \in X}$ for the L_X -expansion of A where we interpret the constant $a \in X$ as itself.

DEFINITION 10.1. Let A be an infinite L-structure and κ be an infinite cardinal. We say that A is κ -saturated if the following condition holds:

if X is any subset of A with $|X| < \kappa$ and p(x) is any 1-type in L_X that is finitely satisfiable in $(A, a)_{a \in X}$, then p(x) can be realized in $(A, a)_{a \in X}$.

We first make a number of observations:

- (1) If A is κ -saturated, then $|A| \ge \kappa$ and A is also λ -saturated for any infinite $\lambda \le \kappa$.
- (2) If Y is a subset of a κ -saturated model A and $|Y| < \kappa$, then $(A, y)_{y \in Y}$ is κ -saturated as well. The reason for this is that any 1-type over a set of parameters X with $|X| < \kappa$ in $(A, y)_{y \in Y}$ is also a 1-type over the set of parameters $X \cup Y$ in A, and $|X \cup Y| < \kappa$.
- (3) The definition of κ -saturation only talks about 1-types; however, if $p(x_1, \ldots, x_n)$ is an *n*-type over a set of parameters X with $|X| < \kappa$ and p is finitely satisfiable in an κ -saturated model A, then it is realized. To see this, consider the types

$$p_1(x_1), p_2(x_1, x_2), \ldots, p_n(x_1, \ldots, x_n)$$

which are the types obtained from p by considering only those formulas that contain x_1, \ldots, x_i free. Then p_1 is realized, because it is finitely satisfiable in A and A is κ -saturated; moreover, if a_1, \ldots, a_i realize p_i , then $p_{i+1}(a_1, \ldots, a_i, x_{i+1})$ is finitely

satisfied in $(A, y)_{y \in X \cup \{a_1, \dots, a_i\}}$, by Lemma 10.2 below, and hence realized by some a_{i+1} by the previous remark. So each p_i is realized, including $p = p_n$.

(4) The definition only talk about complete types, but this is not a genuine restriction. Indeed, Lemma 7.7(3) tells us that any partial type that is finitely satisfied in a model can be extended to a complete type that is finitely satisfied in that model.

LEMMA 10.2. Let $p(x_1, \ldots, x_n, y)$ be an (n + 1)-type and let $q(x_1, \ldots, x_n)$ be the n-type obtained from p by taking only those $\varphi \in p$ that do not contain y free. If p is finitely satisfiable in M and (a_1, \ldots, a_n) realizes q in M, then also $p(a_1, \ldots, a_n, y)$ is finitely satisfiable in M.

PROOF. Let $\varphi_1(\underline{x}, y), \ldots, \varphi_n(\underline{x}, y)$ be finitely many formulas in p. The formula

 $\psi(\underline{x}) := \exists y \left(\varphi_1(\underline{x}, y) \land \ldots \land \varphi_n(\underline{x}, y) \right)$

has to belong to p: if it would not, its negation would have to belong to p, and p could not be finitely satisfiable. This means that $\psi \in q$, by definition, so $M \models \psi(\underline{a})$. We conclude that $p(\underline{a}, y)$ is finitely satisfiable. \Box

As promised, we have:

PROPOSITION 10.3. Let M be an κ -saturated model of a complete theory T. Then M realizes any type over T.

PROOF. Let M be a model of a complete theory T. If p belongs to $S_n(T)$ then p is finitely satisfiable in M by Proposition 7.6. So if M is κ -saturated, then p will be realized in M.

2. κ -saturated models: existence

It can hard to determine whether a concrete model is κ -saturated or not: we will see some criteria later in this chapter. However, it is not so hard to prove that they exist. In fact, we have:

THEOREM 10.4. Every structure has an κ -saturated elementary extension. So any consistent theory has κ -saturated models for each κ .

The proof relies on the following lemma:

LEMMA 10.5. Let A be an L-structure. There exists an elementary extension B of A such that for every subset $X \subseteq A$, every 1-type in L_X which is finitely satisfied in $(A, a)_{a \in X}$ is realized in $(B, a)_{a \in X}$.

PROOF. Let $(p_i(x_i))_{i \in I}$ be the collection of all such 1-types and b_i be new constants. Consider:

$$T := \bigcup_{i \in I} p_i(b_i).$$

Since the p_i are finitely satisfiable in $(A, a)_{a \in A}$, every finite subset of T can be satisfied in $(A, a)_{a \in A}$. So, by the compactness theorem, T has a model B. Since T contains ElDiag(A), the model A embeds into B.

PROOF. (Of Theorem 10.4.) Let us first look at the case $\kappa = \omega$. Let A be an L-structure. We will build an elementary chain of L-structures $(A_i : i \in \mathbb{N})$. We set $A_0 = A$ and at successor stages we apply the previous lemma. Now let B be the colimit of the entire chain. We claim B is ω -saturated: for if $X \subseteq B$ is a finite subset, then X is already a finite subset of some A_i and any 1-type p with parameters from X will be realized in A_{i+1} , by construction, say by $a \in A_{i+1}$. Since the embedding from A_{i+1} in B is elementary, the type p will also be realized by a in B.

Note that in the previous argument we relied on the following property of ω : if $(A_i)_{i\in\omega}$ is an increasing sequence of sets and X is a subset of $\bigcup_{i\in\omega} A_i$ with $|X| < \omega$, then $X \subseteq A_i$ for some $i \in \omega$. An infinite cardinal κ is called *regular* if for any increasing sequence of sets $(A_i)_{i\in\kappa}$ and any subset X of $\bigcup_{i\in\kappa} A_i$ with $|X| < \kappa$ there is an $i \in \kappa$ with $X \subseteq A_i$. It is not hard to see that the argument we just gave works for every regular cardinal: if κ is a regular cardinal and A is any model, then we can create by transfinite recursion an elementary chain $(A_i: i \in \kappa)$ of models, starting with $A_0 = A$; at successor stages we apply Lemma 10.5 and at limit stages we take colimits. The colimit of the entire chain will be a model in which A embeds elementarily and it will be κ -saturated, because κ is regular.

At this point the proof would be finished once we know that there are arbitrarily large regular cardinals, that is, if for every cardinal κ there is a regular cardinal λ with $\lambda \geq \kappa$. According to the set theorists this is true: indeed, $\lambda = \kappa^+$ is always regular.

3. Tests for κ -saturation

In this section we give an equivalent characterisation of κ -saturation which is often easier to verify. For this we need a lemma and a definition.

LEMMA 10.6. Let $f: X \subseteq M \to N$ be an elementary map, and $m \in M$. If κ is an infinite cardinal such that N is κ -saturated and $|X| < \kappa$, then f can be extended to an elementary map whose domain includes m.

PROOF. If $f: X \subseteq M \to N$ is an elementary map, then $(M, x)_{x \in X} \equiv (N, fx)_{x \in X}$. So if $p = \operatorname{tp}_{(M,x)_{x \in X}}(m)$, then p is finitely satisfied in $(N, fx)_{x \in X}$ by Lemma 7.7(1). Since $(N, fx)_{x \in X}$ is also κ -saturated, we find an element $n \in N$ realizing p in this model. This means that we can extend f to an elementary map g whose domain includes m by putting g(x) = f(x) for every $x \in X$ and g(m) = n.

DEFINITION 10.7. A model M is called κ -homogeneous, if for any subset X of M with $|X| < \kappa$, any elementary map $f: X \subseteq M \to M$ and any element $m \in M$, the map f can be extended to an elementary map g whose domain includes m. A model M is called κ -universal, if for any model N with $N \equiv M$ and $|N| < \kappa$ there is an elementary embedding $N \preceq M$.

THEOREM 10.8. Let M be an infinite L-structure and κ be an infinite cardinal with $\kappa \geq |L|$. Then M is κ -saturated if and only if M is κ -homogeneous and κ^+ -universal.

PROOF. Assume M is a κ -saturated L-structure with $\kappa \geq |L|$. Lemma 10.6 immediately implies that M is κ -homogeneous, so it suffices to prove that M is also κ^+ -universal. To this purpose let N be a model with $N \equiv M$ and $|N| \leq \kappa$. Choose an enumeration $N = (n_{\alpha})_{\alpha \in \kappa}$; the idea is to construct by transfinite recursion on α an increasing sequence of elementary maps $f_{\alpha}: \{n_{\beta}: \beta < \alpha\} \subseteq N \to M$. (Note that $|\{n_{\beta}: \beta < \alpha\}| < \kappa$ for each $\alpha \in \kappa$.) Since $N \equiv M$, we can start by putting $f_0 = \emptyset$; at successor stages we use Lemma 10.6 and at limit stages we take unions.

Conversely, suppose M is an infinite model which is κ -homogeneous and κ^+ -universal and p is a complete 1-type with parameters $X \subseteq M$ and $|X| < \kappa$ which is finitely satisfied in M.

We know by the Skolem-Löwenheim Theorems that p is realized by some element n in some L_X -structure N with $|N| \leq \kappa$. Since M is a κ^+ -universal L-structure there is an L-elementary embedding $i: N \to M$. Note that i need not be an L_X -elementary embedding, so that for any $x \in X$ there may be a difference between $i(x^N)$ and x^M . But by the completeness of p we know that the partial map f from M to itself defined by sending $i(x^N)$ to x^M is elementary. Since M is κ -homogeneous, we know that this elementary map can be extended by one whose domain includes i(n); write g for such an extension and m = g(n). Then m realizes p in M.

This characterisation is especially useful if we are working with a theory which has *quantifier* elimination.

DEFINITION 10.9. A theory T in a language L has quantifier elimination if for any Lformula $\varphi(x_1, \ldots, x_n)$ there is quantifier-free L-formula $\psi(x_1, \ldots, x_n)$ such that

$$T \models \varphi \leftrightarrow \psi.$$

COROLLARY 10.10. Suppose T is an L-theory with quantifier elimination and κ is an infinite cardinal with $\kappa \geq |L|$. If M is an infinite model of T such that:

- (1) every model N of T with $|N| \leq \kappa$ embeds into M, and
- (2) for any element $m \in M$ and any local isomorphism $f: X \subseteq M \to M$ where X is a subset of M with $|X| < \kappa$, the map f can be extended to a local isomorphism whose domain includes m.

Then M is κ -saturated.

PROOF. If T has quantifier elimination then any embedding between models of T is elementary and any local isomorphism between models of T is an elementary map. So this follows from the previous theorem. \Box

4. Tests for quantifier elimination

Clearly, in order to use Corollary 10.10 we also need some tests for quantifier elimination. In this section we give two. The first one is simple:

DEFINITION 10.11. A *literal* is an atomic formula or a negated atomic formula. A formula will be called *primitive* if it is of the form

$$\exists x \, \varphi(y, x)$$

where φ is a conjunction of literals.

PROPOSITION 10.12. A theory T has quantifier elimination if and only if any primitive formula is equivalent over T to a quantifier-free formula.

PROOF. Suppose every primitive formula is equivalent over T to a quantifier-free formula. Then every formula of the form

$$\exists x \, \varphi(y, x)$$

with φ quantifier-free is also equivalent to a quantifier-free formula: for we can write $\varphi(\underline{y}, x)$ in disjunctive normal form, that is, as a disjunction $\bigvee_i \varphi_i(\underline{y}, x)$, where each $\varphi_i(\underline{y}, x)$ is a conjunctions of literals. Then we can push the disjunction through the existential quantifier, using that

$$\exists x \bigvee_i \varphi_i(\underline{y}, x) \leftrightarrow \bigvee_i \exists x \, \varphi_i(\underline{y}, x),$$

so that we are left with a disjunction of primitive formulas, which is equivalent to a quantifierfree formula, by assumption.

Now let φ be an arbitrary formula. We can rewrite φ into an equivalent formula using only \neg , \wedge and \exists , and then, working inside out, eliminate all the existential quantifiers using the previous observation.

The second is a bit more complicated, but generally easier to apply.

THEOREM 10.13. Let κ be an infinite cardinal. A theory T has quantifier elimination if and only if, given

- (1) two models M and N of T, where N is κ -saturated,
- (2) a local isomorphism $f: \{a_1, \ldots, a_n\} \subseteq M \to N$, and
- (3) an element $m \in M$,

there is a local isomorphism $g: \{a_1, \ldots, a_n, m\} \subseteq M \to N$ which extends f.

PROOF. Necessity is clear: if T has quantifier elimination, then any local isomorphism is an elementary map, so this follows from Lemma 10.6.

Conversely, let L be the language of T and suppose $\exists x \varphi(\underline{y}, x)$ is a primitive formula not equivalent over T to a quantifier-free formula in L. Extend the language with constants \underline{c} and work in the extended language. Now let T_0 be the collection of all quantifier-free sentences which are a consequence over T of $\neg \exists x \varphi(\underline{c}, x)$. Then the union of T, T_0 and $\exists y \varphi(\underline{c}, y)$ has a model M.

Next, consider T_1 , which consists of the theory T, all quantifier-free sentences in the extended language which are true in M, as well as the sentence $\neg \exists y \varphi(\underline{c}, y)$. This theory T_1 is consistent: for if not, there would be a quantifier-free sentence $\psi(\underline{c})$ which is false in M and and which is a consequence of $\neg \exists x \varphi(\underline{c}, x)$ over T. But such a sentence must belong to T_0 and therefore be true in M. Contradiction!

So T_1 has a model N and we may assume that N is κ -saturated. Now let f be the map which sends the interpretation of c_i in M to its interpretation in N and let m be such that $M \models \varphi(\underline{c}, m)$. This f is a local isomorphism, but cannot be extended to one whose domain includes m, because $\exists y \varphi(\underline{c}, y)$ fails in N.

5. Exercises

EXERCISE 1. Let $L = \{E\}$ where E is a binary relation symbol. For each of the following theories either prove that they have quantifier elimination, or give an example showing that they do not have quantifier elimination; in the latter case, also formulate a natural extension $T' \supseteq T$ in an extended language $L' \supseteq L$ in which they do have quantifier elimination.

- (a) E is an equivalence relation with infinitely many equivalence classes, each having size 2.
- (b) E is an equivalence relation with infinitely many equivalence classes, each having infinite size.
- (c) E is an equivalence relation with infinitely many equivalence classes of size 2, infinitely many equivalence classes of size 3, and each equivalence class has size 2 or 3.

EXERCISE 2. Let $M = (\mathbb{Z}, s)$, where s(x) = x + 1, and let T = Th(M).

- (a) Show that T has quantifier elimination.
- (b) Give a concrete description of a countable ω -saturated model of T.
- (c) Describe the type spaces of T.
- (d) Show that $\operatorname{Th}(\mathbb{N}, s)$ does not have quantifier elimination.
- EXERCISE 3. (a) Show that the theory of $(\mathbb{Z}, <)$ has quantifier elimination in the language where we add a function symbol s for the function s(x) = x + 1.
- (b) Give a concrete description of a countable ω -saturated model of Th($\mathbb{Z}, <$).
- (c) Describe the type spaces of $Th(\mathbb{Z}, <)$

EXERCISE 4. Let T be the theory of infinite vector spaces over \mathbb{Q} .

- (a) Show that T has quantifier elimination.
- (b) Which models of T are κ -saturated?
- (c) Describe the type spaces of T.

EXERCISE 5. Let M be an infinite L-structure and κ be an infinite cardinal with $\kappa > |L| + \aleph_0$. Show that M is κ -saturated if and only if it is κ -homogeneous and κ -universal.