CHAPTER 10

rk-saturated models and quantifier elimination

In this chapter we take a look at two concepts which are useful in analysing type spaces.
The first concept is that of a k-saturated model. An important feature of k-saturated models of
a complete theory T is that they realise all types over T": this means that the type spaces of T
can be exhaustively analysed by looking at configurations of elements in a k-saturated model.

The other concept is quantifier elimination. A theory 1" has quantifier elimination if, over
T, any formula is equivalent to one without quantifiers. As one can imagine, this makes models
of T much easier to understand. Indeed, quantifier elimination is so useful that even when a
theory T does not have quantifier elimination, model theorists will typically search for natural
extensions of T' which do have quantifier elimination.

1. x-saturated models: definition

To define x-saturated models we need to introduce some notational conventions. Let A be
an L-structure and X a subset of A. We often refer to the elements in X as parameters. In
addition, we will use the following notation:

e We write Lx for the language L extended with constants for all elements of X.
e We write (A4, a)qcx for the L x-expansion of A where we interpret the constant a € X
as itself.

DEFINITION 10.1. Let A be an infinite L-structure and x be an infinite cardinal. We say
that A is k-saturated if the following condition holds:

if X is any subset of A with |X| < k and p(z) is any 1-type in Lx that is
finitely satisfiable in (A, a)qex, then p(z) can be realized in (A, a)qex-

We first make a number of observations:

(1) If A is k-saturated, then |A| > k and A is also A-saturated for any infinite A < k.

(2) If Y is a subset of a k-saturated model A and |Y| < &, then (A,y)ycy is k-saturated
as well. The reason for this is that any 1-type over a set of parameters X with |X| < k
in (A,y)yey is also a 1-type over the set of parameters X UY in A, and |[ X UY| < k.

(3) The definition of x-saturation only talks about 1-types; however, if p(z1,...,2,) is
an n-type over a set of parameters X with | X| < « and p is finitely satisfiable in an
k-saturated model A, then it is realized. To see this, consider the types

pl(zl)aPQ(x17x2)7 e 7pn(x17 ce. 737”)

which are the types obtained from p by considering only those formulas that contain
1, ..., x; free. Then p; is realized, because it is finitely satisfiable in A and A is
k-saturated; moreover, if ay,...,a; realize p;, then p;11(as,...,a;,z;+1) is finitely
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satisfied in (A, y)yexufay,...,ai}, Dy Lemma 10.2 below, and hence realized by some
a;+1 by the previous remark. So each p; is realized, including p = p,,.

(4) The definition only talk about complete types, but this is not a genuine restriction.
Indeed, Lemma 7.7(3) tells us that any partial type that is finitely satisfied in a model
can be extended to a complete type that is finitely satisfied in that model.

LEMMA 10.2. Let p(z1,...,2Zn,y) be an (n + 1)-type and let q(x1,...,x,) be the n-type
obtained from p by taking only those @ € p that do not contain y free. If p is finitely satisfiable
in M and (a1, ...,ay) realizes q in M, then also p(ay, ..., an,y) is finitely satisfiable in M.

PROOF. Let p1(z,y),...,¢n(z,y) be finitely many formulas in p. The formula
d(@):=3y (i@ y) A Awalz,y))

has to belong to p: if it would not, its negation would have to belong to p, and p could not
be finitely satisfiable. This means that ¢ € ¢, by definition, so M = ¥(a). We conclude that
p(a,y) is finitely satisfiable. |

As promised, we have:

PrOPOSITION 10.3. Let M be an k-saturated model of a complete theory T. Then M
realizes any type over T.

PROOF. Let M be a model of a complete theory T'. If p belongs to S,,(T") then p is finitely
satisfiable in M by Proposition 7.6. So if M is k-saturated, then p will be realized in M. O

2. k-saturated models: existence

It can hard to determine whether a concrete model is x-saturated or not: we will see some
criteria later in this chapter. However, it is not so hard to prove that they exist. In fact, we
have:

THEOREM 10.4. FEvery structure has an k-saturated elementary extension. So any consis-
tent theory has k-saturated models for each k.

The proof relies on the following lemma:

LEMMA 10.5. Let A be an L-structure. There exists an elementary extension B of A such
that for every subset X C A, every I-type in Lx which is finitely satisfied in (A, a)qex 18
realized in (B,a)qcx .

PROOF. Let (p;(x;))icr be the collection of all such 1-types and b; be new constants.

Consider:

iel
Since the p; are finitely satisfiable in (A, a)qca, every finite subset of T' can be satisfied in
(A,a)qca. So, by the compactness theorem, T has a model B. Since T contains ElDiag(A),
the model A embeds into B. O

PrOOF. (Of Theorem 10.4.) Let us first look at the case k = w. Let A be an L-structure.
We will build an elementary chain of L-structures (4;: i € N). We set Ag = A and at successor
stages we apply the previous lemma. Now let B be the colimit of the entire chain.
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We claim B is w-saturated: for if X C B is a finite subset, then X is already a finite subset
of some A; and any 1-type p with parameters from X will be realized in A;41, by construction,
say by a € A;11. Since the embedding from A;;; in B is elementary, the type p will also be
realized by a in B.

Note that in the previous argument we relied on the following property of w: if (A;);e. is
an increasing sequence of sets and X is a subset of (J;.,, A; with |X| < w, then X C A; for
some ¢ € w. An infinite cardinal & is called regular if for any increasing sequence of sets (A;);cx
and any subset X of |J;,. A; with [X| < & there is an i € x with X C A;. It is not hard to see
that the argument we just gave works for every regular cardinal: if k is a regular cardinal and
A is any model, then we can create by transfinite recursion an elementary chain (4;: i € k) of
models, starting with Ag = A; at successor stages we apply Lemma 10.5 and at limit stages we
take colimits. The colimit of the entire chain will be a model in which A embeds elementarily
and it will be k-saturated, because & is regular.

At this point the proof would be finished once we know that there are arbitrarily large
regular cardinals, that is, if for every cardinal x there is a regular cardinal A with A > k.
According to the set theorists this is true: indeed, A = k™ is always regular. O

3. Tests for k-saturation

In this section we give an equivalent characterisation of x-saturation which is often easier
to verify. For this we need a lemma and a definition.

LEMMA 10.6. Let f: X C M — N be an elementary map, and m € M. If k is an infinite
cardinal such that N is k-saturated and | X| < k, then f can be extended to an elementary map
whose domain includes m.

ProoF. If f: X C M — N is an elementary map, then (M, z),cx = (N, fz)zex. So if
P = tP(a,2),c x (M), then p is finitely satisfied in (N, fz),ex by Lemma 7.7(1). Since (N, fz),ex
is also k-saturated, we find an element n € N realizing p in this model. This means that we
can extend f to an elementary map g whose domain includes m by putting g(z) = f(x) for
every z € X and g(m) = n.

DEFINITION 10.7. A model M is called k-homogeneous, if for any subset X of M with
|X| < k, any elementary map f: X C M — M and any element m € M, the map f can be
extended to an elementary map g whose domain includes m. A model M is called k-universal,
if for any model N with N = M and |N| < & there is an elementary embedding N < M.

THEOREM 10.8. Let M be an infinite L-structure and k be an infinite cardinal with k > |L]|.
Then M is k-saturated if and only if M is k-homogeneous and k™ -universal.

PROOF. Assume M is a k-saturated L-structure with x > |L|. Lemma 10.6 immediately
implies that M is xk-homogeneous, so it suffices to prove that M is also x*-universal. To this
purpose let N be a model with N = M and |N| < k. Choose an enumeration N = (n4)acs;
the idea is to construct by transfinite recursion on « an increasing sequence of elementary maps
fai{ng: B <a} € N — M. (Note that [{ng: 8 < a}| < k for each a € k.) Since N = M, we
can start by putting fo = 0; at successor stages we use Lemma 10.6 and at limit stages we take
unions.

Conversely, suppose M is an infinite model which is xK-homogeneous and x*-universal and
p is a complete 1-type with parameters X C M and |X| < k which is finitely satisfied in M.
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We know by the Skolem-Lowenheim Theorems that p is realized by some element n in some
L x-structure N with |[N| < k. Since M is a kT -universal L-structure there is an L-elementary
embedding i: N — M. Note that ¢ need not be an L x-elementary embedding, so that for any
x € X there may be a difference between i(z) and ™. But by the completeness of p we know
that the partial map f from M to itself defined by sending i(2™V) to 2™ is elementary. Since M
is k-homogeneous, we know that this elementary map can be extended by one whose domain
includes i(n); write g for such an extension and m = g(n). Then m realizes p in M. (]

This characterisation is especially useful if we are working with a theory which has quantifier
elimination.

DEFINITION 10.9. A theory T in a language L has quantifier elimination if for any L-
formula ¢(x1,...,x,) there is quantifier-free L-formula ¢ (z1,...,x,) such that

TE <.

COROLLARY 10.10. Suppose T is an L-theory with quantifier elimination and k is an infinite
cardinal with k > |L|. If M is an infinite model of T such that:

(1) every model N of T with |N| < k embeds into M, and

(2) for any element m € M and any local isomorphism f: X C M — M where X is a
subset of M with |X| < K, the map f can be extended to a local isomorphism whose
domain includes m.

Then M is k-saturated.

PROOF. If T has quantifier elimination then any embedding between models of T is ele-
mentary and any local isomorphism between models of T" is an elementary map. So this follows
from the previous theorem. O

4. Tests for quantifier elimination

Clearly, in order to use Corollary 10.10 we also need some tests for quantifier elimination.
In this section we give two. The first one is simple:

DEFINITION 10.11. A literal is an atomic formula or a negated atomic formula. A formula
will be called primitive if it is of the form

3z @(y, x)
where ¢ is a conjunction of literals.

ProroOSITION 10.12. A theory T has quantifier elimination if and only if any primitive
formula is equivalent over T to a quantifier-free formula.

PROOF. Suppose every primitive formula is equivalent over T' to a quantifier-free formula.
Then every formula of the form
3z o(y, z)
with ¢ quantifier-free is also equivalent to a quantifier-free formula: for we can write ¢(y, x)
in disjunctive normal form, that is, as a disjunction \/, ¢;(y, x), where each ¢;(y, ) is a con-
junctions of literals. Then we can push the disjunction through the existential quantifier, using

that
3z \/ ¢i(y, 2) < \/ 3z @iy, ),
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so that we are left with a disjunction of primitive formulas, which is equivalent to a quantifier-
free formula, by assumption.

Now let ¢ be an arbitrary formula. We can rewrite ¢ into an equivalent formula using
only =, A and 3, and then, working inside out, eliminate all the existential quantifiers using the
previous observation. O

The second is a bit more complicated, but generally easier to apply.

THEOREM 10.13. Let k be an infinite cardinal. A theory T has quantifier elimination if
and only if, given

(1) two models M and N of T, where N is k-saturated,
(2) a local isomorphism f:{a1,...,a,} C M — N, and
(3) an element m € M,

there is a local isomorphism g:{a1,...,an,m} C M — N which extends f.

PROOF. Necessity is clear: if T' has quantifier elimination, then any local isomorphism is
an elementary map, so this follows from Lemma 10.6.

Conversely, let L be the language of T' and suppose 3z p(y, z) is a primitive formula not
equivalent over T' to a quantifier-free formula in L. Extend the language with constants ¢ and
work in the extended language. Now let Ty be the collection of all quantifier-free sentences
which are a consequence over T' of =3z ¢(c¢, ). Then the union of T, Ty and Jy ¢(c,y) has a
model M.

Next, consider 77, which consists of the theory T, all quantifier-free sentences in the ex-
tended language which are true in M, as well as the sentence =3y (¢, y). This theory Ty is
consistent: for if not, there would be a quantifier-free sentence ¥ (c) which is false in M and
and which is a consequence of —3x ¢(c, ) over T. But such a sentence must belong to T and
therefore be true in M. Contradiction!

So T7 has a model N and we may assume that N is k-saturated. Now let f be the map
which sends the interpretation of ¢; in M to its interpretation in N and let m be such that
M = ¢(¢,m). This f is a local isomorphism, but cannot be extended to one whose domain
includes m, because Jy ¢(c,y) fails in N. O

5. Exercises

EXERCISE 1. Let L = {E} where E is a binary relation symbol. For each of the following
theories either prove that they have quantifier elimination, or give an example showing that
they do not have quantifier elimination; in the latter case, also formulate a natural extension
T’ O T in an extended language L’ O L in which they do have quantifier elimination.

(a) F is an equivalence relation with infinitely many equivalence classes, each having size
2.

(b) E is an equivalence relation with infinitely many equivalence classes, each having
infinite size.

(¢c) FE is an equivalence relation with infinitely many equivalence classes of size 2, infinitely
many equivalence classes of size 3, and each equivalence class has size 2 or 3.

EXERCISE 2. Let M = (Z, s), where s(z) = x + 1, and let T'= Th(M).
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(a) Show that T has quantifier elimination.

(b) Give a concrete description of a countable w-saturated model of T'.
(¢) Describe the type spaces of T'.

(d) Show that Th(N, s) does not have quantifier elimination.

EXERCISE 3. (a) Show that the theory of (Z, <) has quantifier elimination in the
language where we add a function symbol s for the function s(z) = = + 1.
(b) Give a concrete description of a countable w-saturated model of Th(Z, <).
(¢) Describe the type spaces of Th(Z, <)

EXERCISE 4. Let T be the theory of infinite vector spaces over Q.

(a) Show that T has quantifier elimination.
(b) Which models of T are k-saturated?
(¢) Describe the type spaces of T'.

EXERCISE 5. Let M be an infinite L-structure and s be an infinite cardinal with £ >
|L| + No. Show that M is s-saturated if and only if it is k-homogeneous and s-universal.



