
CHAPTER 10

κ-saturated models and quantifier elimination

In this chapter we take a look at two concepts which are useful in analysing type spaces.
The first concept is that of a κ-saturated model. An important feature of κ-saturated models of
a complete theory T is that they realise all types over T : this means that the type spaces of T
can be exhaustively analysed by looking at configurations of elements in a κ-saturated model.

The other concept is quantifier elimination. A theory T has quantifier elimination if, over
T , any formula is equivalent to one without quantifiers. As one can imagine, this makes models
of T much easier to understand. Indeed, quantifier elimination is so useful that even when a
theory T does not have quantifier elimination, model theorists will typically search for natural
extensions of T which do have quantifier elimination.

1. κ-saturated models: definition

To define κ-saturated models we need to introduce some notational conventions. Let A be
an L-structure and X a subset of A. We often refer to the elements in X as parameters. In
addition, we will use the following notation:

• We write LX for the language L extended with constants for all elements of X.
• We write (A, a)a∈X for the LX -expansion of A where we interpret the constant a ∈ X

as itself.

Definition 10.1. Let A be an infinite L-structure and κ be an infinite cardinal. We say
that A is κ-saturated if the following condition holds:

if X is any subset of A with |X| < κ and p(x) is any 1-type in LX that is
finitely satisfiable in (A, a)a∈X , then p(x) can be realized in (A, a)a∈X .

We first make a number of observations:

(1) If A is κ-saturated, then |A| ≥ κ and A is also λ-saturated for any infinite λ ≤ κ.
(2) If Y is a subset of a κ-saturated model A and |Y | < κ, then (A, y)y∈Y is κ-saturated

as well. The reason for this is that any 1-type over a set of parameters X with |X| < κ
in (A, y)y∈Y is also a 1-type over the set of parameters X ∪ Y in A, and |X ∪ Y | < κ.

(3) The definition of κ-saturation only talks about 1-types; however, if p(x1, . . . , xn) is
an n-type over a set of parameters X with |X| < κ and p is finitely satisfiable in an
κ-saturated model A, then it is realized. To see this, consider the types

p1(x1), p2(x1, x2), . . . , pn(x1, . . . , xn)

which are the types obtained from p by considering only those formulas that contain
x1, . . . , xi free. Then p1 is realized, because it is finitely satisfiable in A and A is
κ-saturated; moreover, if a1, . . . , ai realize pi, then pi+1(a1, . . . , ai, xi+1) is finitely
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satisfied in (A, y)y∈X∪{a1,...,ai}, by Lemma 10.2 below, and hence realized by some
ai+1 by the previous remark. So each pi is realized, including p = pn.

(4) The definition only talk about complete types, but this is not a genuine restriction.
Indeed, Lemma 7.7(3) tells us that any partial type that is finitely satisfied in a model
can be extended to a complete type that is finitely satisfied in that model.

Lemma 10.2. Let p(x1, . . . , xn, y) be an (n + 1)-type and let q(x1, . . . , xn) be the n-type
obtained from p by taking only those ϕ ∈ p that do not contain y free. If p is finitely satisfiable
in M and (a1, . . . , an) realizes q in M , then also p(a1, . . . , an, y) is finitely satisfiable in M .

Proof. Let ϕ1(x, y), . . . , ϕn(x, y) be finitely many formulas in p. The formula

ψ(x): = ∃y
(
ϕ1(x, y) ∧ . . . ∧ ϕn(x, y)

)
has to belong to p: if it would not, its negation would have to belong to p, and p could not
be finitely satisfiable. This means that ψ ∈ q, by definition, so M |= ψ(a). We conclude that
p(a, y) is finitely satisfiable. �

As promised, we have:

Proposition 10.3. Let M be an κ-saturated model of a complete theory T . Then M
realizes any type over T .

Proof. Let M be a model of a complete theory T . If p belongs to Sn(T ) then p is finitely
satisfiable in M by Proposition 7.6. So if M is κ-saturated, then p will be realized in M . �

2. κ-saturated models: existence

It can hard to determine whether a concrete model is κ-saturated or not: we will see some
criteria later in this chapter. However, it is not so hard to prove that they exist. In fact, we
have:

Theorem 10.4. Every structure has an κ-saturated elementary extension. So any consis-
tent theory has κ-saturated models for each κ.

The proof relies on the following lemma:

Lemma 10.5. Let A be an L-structure. There exists an elementary extension B of A such
that for every subset X ⊆ A, every 1-type in LX which is finitely satisfied in (A, a)a∈X is
realized in (B, a)a∈X .

Proof. Let (pi(xi))i∈I be the collection of all such 1-types and bi be new constants.
Consider:

T : =
⋃
i∈I

pi(bi).

Since the pi are finitely satisfiable in (A, a)a∈A, every finite subset of T can be satisfied in
(A, a)a∈A. So, by the compactness theorem, T has a model B. Since T contains ElDiag(A),
the model A embeds into B. �

Proof. (Of Theorem 10.4.) Let us first look at the case κ = ω. Let A be an L-structure.
We will build an elementary chain of L-structures (Ai : i ∈ N). We set A0 = A and at successor
stages we apply the previous lemma. Now let B be the colimit of the entire chain.
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We claim B is ω-saturated: for if X ⊆ B is a finite subset, then X is already a finite subset
of some Ai and any 1-type p with parameters from X will be realized in Ai+1, by construction,
say by a ∈ Ai+1. Since the embedding from Ai+1 in B is elementary, the type p will also be
realized by a in B.

Note that in the previous argument we relied on the following property of ω: if (Ai)i∈ω is
an increasing sequence of sets and X is a subset of

⋃
i∈ω Ai with |X| < ω, then X ⊆ Ai for

some i ∈ ω. An infinite cardinal κ is called regular if for any increasing sequence of sets (Ai)i∈κ
and any subset X of

⋃
i∈κAi with |X| < κ there is an i ∈ κ with X ⊆ Ai. It is not hard to see

that the argument we just gave works for every regular cardinal: if κ is a regular cardinal and
A is any model, then we can create by transfinite recursion an elementary chain (Ai : i ∈ κ) of
models, starting with A0 = A; at successor stages we apply Lemma 10.5 and at limit stages we
take colimits. The colimit of the entire chain will be a model in which A embeds elementarily
and it will be κ-saturated, because κ is regular.

At this point the proof would be finished once we know that there are arbitrarily large
regular cardinals, that is, if for every cardinal κ there is a regular cardinal λ with λ ≥ κ.
According to the set theorists this is true: indeed, λ = κ+ is always regular. �

3. Tests for κ-saturation

In this section we give an equivalent characterisation of κ-saturation which is often easier
to verify. For this we need a lemma and a definition.

Lemma 10.6. Let f :X ⊆ M → N be an elementary map, and m ∈ M . If κ is an infinite
cardinal such that N is κ-saturated and |X| < κ, then f can be extended to an elementary map
whose domain includes m.

Proof. If f :X ⊆ M → N is an elementary map, then (M,x)x∈X ≡ (N, fx)x∈X . So if
p = tp(M,x)x∈X

(m), then p is finitely satisfied in (N, fx)x∈X by Lemma 7.7(1). Since (N, fx)x∈X
is also κ-saturated, we find an element n ∈ N realizing p in this model. This means that we
can extend f to an elementary map g whose domain includes m by putting g(x) = f(x) for
every x ∈ X and g(m) = n. �

Definition 10.7. A model M is called κ-homogeneous, if for any subset X of M with
|X| < κ, any elementary map f :X ⊆ M → M and any element m ∈ M , the map f can be
extended to an elementary map g whose domain includes m. A model M is called κ-universal,
if for any model N with N ≡M and |N | < κ there is an elementary embedding N �M .

Theorem 10.8. Let M be an infinite L-structure and κ be an infinite cardinal with κ ≥ |L|.
Then M is κ-saturated if and only if M is κ-homogeneous and κ+-universal.

Proof. Assume M is a κ-saturated L-structure with κ ≥ |L|. Lemma 10.6 immediately
implies that M is κ-homogeneous, so it suffices to prove that M is also κ+-universal. To this
purpose let N be a model with N ≡ M and |N | ≤ κ. Choose an enumeration N = (nα)α∈κ;
the idea is to construct by transfinite recursion on α an increasing sequence of elementary maps
fα: {nβ :β < α} ⊆ N → M . (Note that |{nβ :β < α}| < κ for each α ∈ κ.) Since N ≡ M , we
can start by putting f0 = ∅; at successor stages we use Lemma 10.6 and at limit stages we take
unions.

Conversely, suppose M is an infinite model which is κ-homogeneous and κ+-universal and
p is a complete 1-type with parameters X ⊆ M and |X| < κ which is finitely satisfied in M .
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We know by the Skolem-Löwenheim Theorems that p is realized by some element n in some
LX -structure N with |N | ≤ κ. Since M is a κ+-universal L-structure there is an L-elementary
embedding i:N → M . Note that i need not be an LX -elementary embedding, so that for any
x ∈ X there may be a difference between i(xN ) and xM . But by the completeness of p we know
that the partial map f from M to itself defined by sending i(xN ) to xM is elementary. Since M
is κ-homogeneous, we know that this elementary map can be extended by one whose domain
includes i(n); write g for such an extension and m = g(n). Then m realizes p in M . �

This characterisation is especially useful if we are working with a theory which has quantifier
elimination.

Definition 10.9. A theory T in a language L has quantifier elimination if for any L-
formula ϕ(x1, . . . , xn) there is quantifier-free L-formula ψ(x1, . . . , xn) such that

T |= ϕ↔ ψ.

Corollary 10.10. Suppose T is an L-theory with quantifier elimination and κ is an infinite
cardinal with κ ≥ |L|. If M is an infinite model of T such that:

(1) every model N of T with |N | ≤ κ embeds into M , and
(2) for any element m ∈ M and any local isomorphism f :X ⊆ M → M where X is a

subset of M with |X| < κ, the map f can be extended to a local isomorphism whose
domain includes m.

Then M is κ-saturated.

Proof. If T has quantifier elimination then any embedding between models of T is ele-
mentary and any local isomorphism between models of T is an elementary map. So this follows
from the previous theorem. �

4. Tests for quantifier elimination

Clearly, in order to use Corollary 10.10 we also need some tests for quantifier elimination.
In this section we give two. The first one is simple:

Definition 10.11. A literal is an atomic formula or a negated atomic formula. A formula
will be called primitive if it is of the form

∃xϕ(y, x)

where ϕ is a conjunction of literals.

Proposition 10.12. A theory T has quantifier elimination if and only if any primitive
formula is equivalent over T to a quantifier-free formula.

Proof. Suppose every primitive formula is equivalent over T to a quantifier-free formula.
Then every formula of the form

∃xϕ(y, x)

with ϕ quantifier-free is also equivalent to a quantifier-free formula: for we can write ϕ(y, x)
in disjunctive normal form, that is, as a disjunction

∨
i ϕi(y, x), where each ϕi(y, x) is a con-

junctions of literals. Then we can push the disjunction through the existential quantifier, using
that

∃x
∨
i

ϕi(y, x)↔
∨
i

∃xϕi(y, x),



5. EXERCISES 5

so that we are left with a disjunction of primitive formulas, which is equivalent to a quantifier-
free formula, by assumption.

Now let ϕ be an arbitrary formula. We can rewrite ϕ into an equivalent formula using
only ¬,∧ and ∃, and then, working inside out, eliminate all the existential quantifiers using the
previous observation. �

The second is a bit more complicated, but generally easier to apply.

Theorem 10.13. Let κ be an infinite cardinal. A theory T has quantifier elimination if
and only if, given

(1) two models M and N of T , where N is κ-saturated,
(2) a local isomorphism f : {a1, . . . , an} ⊆M → N , and
(3) an element m ∈M ,

there is a local isomorphism g: {a1, . . . , an,m} ⊆M → N which extends f .

Proof. Necessity is clear: if T has quantifier elimination, then any local isomorphism is
an elementary map, so this follows from Lemma 10.6.

Conversely, let L be the language of T and suppose ∃xϕ(y, x) is a primitive formula not
equivalent over T to a quantifier-free formula in L. Extend the language with constants c and
work in the extended language. Now let T0 be the collection of all quantifier-free sentences
which are a consequence over T of ¬∃xϕ(c, x). Then the union of T , T0 and ∃y ϕ(c, y) has a
model M .

Next, consider T1, which consists of the theory T , all quantifier-free sentences in the ex-
tended language which are true in M , as well as the sentence ¬∃y ϕ(c, y). This theory T1 is
consistent: for if not, there would be a quantifier-free sentence ψ(c) which is false in M and
and which is a consequence of ¬∃xϕ(c, x) over T . But such a sentence must belong to T0 and
therefore be true in M . Contradiction!

So T1 has a model N and we may assume that N is κ-saturated. Now let f be the map
which sends the interpretation of ci in M to its interpretation in N and let m be such that
M |= ϕ(c,m). This f is a local isomorphism, but cannot be extended to one whose domain
includes m, because ∃y ϕ(c, y) fails in N . �

5. Exercises

Exercise 1. Let L = {E} where E is a binary relation symbol. For each of the following
theories either prove that they have quantifier elimination, or give an example showing that
they do not have quantifier elimination; in the latter case, also formulate a natural extension
T ′ ⊇ T in an extended language L′ ⊇ L in which they do have quantifier elimination.

(a) E is an equivalence relation with infinitely many equivalence classes, each having size
2.

(b) E is an equivalence relation with infinitely many equivalence classes, each having
infinite size.

(c) E is an equivalence relation with infinitely many equivalence classes of size 2, infinitely
many equivalence classes of size 3, and each equivalence class has size 2 or 3.

Exercise 2. Let M = (Z, s), where s(x) = x+ 1, and let T = Th(M).
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(a) Show that T has quantifier elimination.
(b) Give a concrete description of a countable ω-saturated model of T .
(c) Describe the type spaces of T .
(d) Show that Th(N, s) does not have quantifier elimination.

Exercise 3. (a) Show that the theory of (Z, <) has quantifier elimination in the
language where we add a function symbol s for the function s(x) = x+ 1.

(b) Give a concrete description of a countable ω-saturated model of Th(Z, <).
(c) Describe the type spaces of Th(Z, <)

Exercise 4. Let T be the theory of infinite vector spaces over Q.

(a) Show that T has quantifier elimination.
(b) Which models of T are κ-saturated?
(c) Describe the type spaces of T .

Exercise 5. Let M be an infinite L-structure and κ be an infinite cardinal with κ >
|L|+ ℵ0. Show that M is κ-saturated if and only if it is κ-homogeneous and κ-universal.


